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We consider a nonlinear diffusion equation describing the planar spreading of a viscous

fluid injected between an elastic sheet and an underlying rigid plane. The dynamics depends

sensitively on the physical conditions at the contact line where the sheet is lifted off the

plane by the fluid. We explore two possibilities for these conditions (or “regularisations”): a

pre-wetted film and a constant-pressure fluid lag (a gas-filled gap between the fluid edge and

the contact line). For both flat and inclined planes, we compare numerical and asymptotic

solutions, identifying the distinct stages of evolution and the corresponding characteristic

rates of spreading.

Key words: elastohydrodynamic lubrication theory, thin film, gravity current

1 Introduction

Many physical problems involve the spreading of a viscous fluid layer under gravity. If

the layer is shallow, lubrication theory is often used to describe the fluid dynamics. This

furnishes a nonlinear diffusion equation for the fluid depth, h, that is degenerate at the

edge where h vanishes. Correctly modelling the advance of this front has obvious practical

importance and has attracted much research (see [3, 6]).

In the simplest case when gravity provides the only pressure force, the diffusion equation

is second order and the advance of the front can be correctly predicted by imposing the

condition h = 0 there, the front speed then being determined by mass conservation [15].

When surface tension is introduced, the ‘thin film’ equation is fourth order in space and an

additional condition is required to determine the contact angle tan−1(hx). Unfortunately,

for a moving front that angle is not, in general, constant. Moreover, there are mathematical

difficulties in dealing with a vanishing diffusivity at the contact line. Consequently, for

practical purposes some form of regularisation is usually adopted to avoid these issues. One

common approach is to add a thin pre-wetted film of fluid, thus avoiding the requirement

for any boundary conditions at a genuine contact line or ‘front’ [24]. Unsatisfyingly,

however, the solution can turn out to depend upon the pre-wetted film depth, δ, and may

not converge to any limit as that depth is decreased towards zero [28]. Other forms of

regularisation suffer from a similar problem. Indeed, even outside the confines of the thin

film approximation, full continuum theories of fluid mechanics are unable to describe the

flow near the contact line without introducing molecular-scale physics [3, 6].
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In this paper we consider spreading beneath a thin elastic sheet, when pressure forces

result from bending and stretching of the sheet, as well as from gravity. This gives rise to a

sixth-order diffusion equation, for which it is again convenient to regularise the behaviour

near the front [9]. We consider two alternatives: (i) a pre-wetted film, and (ii) a fluid

lag. For the latter, there is a finite fluid edge, but the sheet does not touch down on the

underlying substrate there; rather, the edge lags the touchdown position, leaving a small

gas-filled gap. The gas in this gap is held at a given constant pressure, −σ, corresponding

to that for which the fluid vaporises, or to some other pressure if other gasses are present

(if the sheet is permeable, for instance). A similar approach is commonly used in models

of fluid-driven fracture [10, 12, 20] and is motivated by the fact that the pressure close to

the advancing front becomes large and negative, causing dissolved gasses to exsolve from

the fluid.

We explore the planar spreading of fluid that is supplied at a constant rate from a

line source on either a flat or a sloping substrate. Using a combination of numerical

computation and asymptotic analysis, we determine in detail how the two regularisations

of the fluid edge impact the dynamics in the limit that the pre-wetted film depth δ becomes

small, or the lag pressure σ becomes large. Our analysis is similar to two previous studies:

Flitton & King [9] examined the spreading over a flat surface of a constant volume, and

Lister, Peng & Neufeld [22] considered the axisymmetric version of our problem.

Applications for which this study is relevant include geophysical, engineering and

biological problems. The growth of magma intrusions and fluid-driven opening of fractures

in the Earth’s crust can be described using a model of this type [4, 23], and analogous

models for turbulent fluid flow have been used to describe subglacial floods [7,27]. Similar

models have application to the manufacture of silicon wafers [16,19], the development of

micro-electro-mechanical systems [14], the peeling of an elastic sheet from an adhesive [5],

“elastocapillarity” [1], the passage of air flow in the lungs [11], the operation of vocal

cords [13], and the suppression of viscous fingering [25].

The paper is organised as follows. In Section 2 the physical problem is described and

we introduce the governing diffusion equation. In Section 3 we consider the dynamics

of the front, describing the regularisations and summarising the effect these have on the

local structure of the solutions in the limit δ → 0 or σ → ∞. We then describe the

numerical and asymptotic results for solutions on the flat, concentrating on the problem

with bending stress in Section 4 and with tension in Section 5. Solutions on a slope are

then considered; those with bending in Section 6, and with tension in Section 7.

2 Model equations

2.1 Dimensional equations

We consider the situation shown in Figure 1: a fluid is injected at the interface between

a rigid substrate and a deformable elastic sheet. The normal displacement of the sheet is

h(x, t), and the fluid flow in the gap is modelled using lubrication theory, for which

ht + Jx = w, J =
h3

12μ
(ρg sin θ − px) , (2.1)
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Figure 1. Diagram showing setup with magnifications of the fluid front for the two

regularisations.

where J(x, t) is the fluid flux along the gap, ρ and μ are the fluid’s density and viscosity,

θ is the angle of the underlying slope, g is the gravitational acceleration, and p(x, t) is the

pressure at the base of the fluid layer. The source term w is taken to be either a point

source with strength Q at the origin, or is spread over a vent of finite width.

The fluid pressure is dictated by the elastic forces in the sheet and the hydrostatic

pressure in the fluid. Modelling the sheet as a beam of thickness d, Young’s modulus E,

and Poisson ratio ν, we have

p =
Ed3

12(1 − ν2)
hxxxx − Nhxx + ρg cos θ h, (2.2)

relative to the pressure in the absence of any deformation, which includes the uniform

weight of the sheet. The tension, N, is given by

N = Ed
(
ξx + 1

2
h2
x

)
, (2.3)

where ξ(x, t) is the in-plane displacement. In the thin layer limit, the fluid traction acting

tangential to the base of the sheet is much smaller than the normal force (the lubrication

pressure), and so the longitudinal force balance on the sheet demands ∂N/∂x = 0; i.e.

N(t) is uniform in space. For related reasons, the in-plane displacement ξ is much smaller

that the out-of-plane deflection h, allowing one to discard any lateral motion of the sheet

in computing the fluid flux in (2.1). If there is no longitudinal displacement of the sheet

for x � Ld(t) and x � −Lu(t), then the integral of (2.3) implies that

N =
Ed

Lu + Ld

∫ Ld

−Lu

1

2
h2
x dx. (2.4)

2.2 Dimensionless equations

Dimensions are removed by writing x = Lx̂, h = Hĥ, t = (LH/Q)t̂, and p = Pp̂, where

L, H and P = 12μQL/H3 are characteristic length, depth, and pressure scales. On

dropping the hat decoration, the dimensionless equations become

ht =
[
h3 (px − S)

]
x
+ w, (2.5)
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Table 1. Potential similarity scalings when a particular term dominates the pressure

gradient

Bending Tension Gravity Slope

Depth t5/9 t5/11 t1/5 t0

Length t4/9 t6/11 t4/5 t

where

p = Bhxxxx − TNhxx + Gh, N =
1

Lu + Ld

∫ Ld

−Lu

1
2
h2
x dx. (2.6)

The source function w(x) is either Dirac’s delta function or is spread over a vent of finite

dimensionless width, xv; in practice, we use 3
4
max(0, x2

v − x2)/x3
v . The parameters are

B =
Ed3

12(1 − ν2)

H
PL4

, T =
EdH3

PL4
, G =

ρg cos θ H
P , S =

L
HG tan θ. (2.7)

These four parameters control the relative importance of the forces of bending and tension,

and gravity acting normal to and down the slope (we refer to G simply as “gravity” and S
as “slope”, for short). If one of these forces dominates the others in the pressure gradient,

a similarity scaling for the fluid depth and length might be expected (e.g. [21, 23]); these

scalings for a constant rate of injection are summarised in Table 1. Particular choices of

the dimensional length and depth scales, L and H, allow two of the parameters to be set

to 1.

3 Contact line dynamics

3.1 The need for regularisation

If the fluid domain is finite, with expanding edges at x = −Xu(t) or Xd(t), then mass

conservation requires

Ẋ = lim
x→X

h2(S − px) for X(t) =

{
−Xd

Xu.
(3.1)

Three further boundary conditions are required at each edge (or two if B = 0), and if

we were to assume that the sheet meets the substrate smoothly at that point, a plausible

choice is h = hx = hxx = 0. However, it is in fact impossible to construct solutions to

(2.5) that have a genuine edge that advances at finite speed [9]. To demonstrate this, one

observes that the local behaviour as x → X(t) and h → 0 is governed by

−Ẋhx ∼
[
h3 (Bhxxxxx − TNhxxx + Ghx − S)

]
x
. (3.2)

Seeking a solution h ∼ (X − x)m for some exponent m, we find the dominant balance

(provided B � 0),

mẊ(X − x)m−1 ∼ Bm(m − 1)(m − 2)(m − 3)(m − 4)(4m − 5)(X − x)4m−6. (3.3)
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Matching exponents requires m = 5/3, but then the sign of term on the left is positive

and that on the right is negative, making this balance unfeasible. A similar result holds if

B = 0 [18]. We conclude that the model described by (2.5) and (2.6) on a finite domain

is incomplete, and are forced to consider some form of regularisation.

3.2 The pre-wetted film

In this model we assume that a thin film is present everywhere and pose (2.5) on an

infinite domain with h → δ as |x| → ∞. There are no longer any genuine fluid fronts, but

the depth decreases sharply towards the thickness of the film at two expanding positions

that can be identified as effective contact lines. For definiteness, we locate these fronts

at x = X(t), where h(X, t) = 2δ and X = −Xu(t) or Xd(t); provided δ � 1, the precise

multiple of δ chosen is of no consequence. This device further enables us to compute the

tension in (2.6) if we adopt Lu = Xu and Ld = Xd. Note that, implicitly, we therefore

assume that the viscous traction in the pre-wetted film is sufficient to anchor the overlying

elastic sheet in place without slipping (enforcing ξ = 0 for x < −Xu and x > Xd), even

though we ignore its effect on the sheet above the main fluid current. The key point in

justifying this assumption is that the pre-wetting film is introduced here as a regularisation

of the model, not necessarily because one is really there.

With the pre-wetted film, our strategy for numerically solving (2.5), (2.6) is first to

truncate the infinite domain and discretise x with a uniform grid on a finite computational

domain that is larger than the final extent of the spreading current. The tension integral is

computed by quadrature and after using centred finite differences for spatial derivatives,

we integrate the resulting system of ODEs in time using a standard stiff integrator. The

initial condition is h(x, 0) = δ, and, for purposes of illustration, we mostly include w as

a line source at x = 0. For spreading over a horizontal surface, we exploit symmetry to

consider only half the domain, 0 � x, imposing hx(0, t) = hxxx(0, t) = 0.

3.3 The fluid lag

In this model the sheet loses contact with the fluid at x = X(t) = −Xu(t) and Xd(t),

and then touches down on the substrate at x = L(t) = −Lu(t) and Ld(t). The regions

−Lu < x < −Xu and Xd < x < Ld are filled with gas at pressure −σ. Over these ‘lags’, h

represents the deflection of the sheet, and the constant pressure requires (cf. (2.6)),

Bhxxxx − TNhxx = −σ. (3.4)

At x = L, we apply the contact conditions h = hx = hxx = 0, and we require continuity of

h and its first four derivatives at the fluid fronts, x = X. The condition hxx = 0 assumes

that there is no adhesion of the sheet to the substrate. Note that, given the hydrostatic

contribution to the pressure, p − Gh = −σ at the top of the fluid and the pressure is

therefore continuous (cf. (2.6) and (3.4)); surface tension and the shape of the fluid front

over the gap are not considered. A similar set of conditions was used by Aristoff et al. in

a related problem [1].
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Whilst (3.4) is straightforward to solve analytically, the solution takes a particularly

simple form if only one of the bending and tension terms are present. With only the

bending term (T = 0), the solution satisfying h = hx = hxx = 0 at x = L is

h =
σ

24B (L − x)3(L − x − �) + h(X) (L − x)3/�3, (3.5)

where � = L − X is the unknown ‘lag’. The remaining continuity conditions are then

hx(X) = σ�3/24B − 3h(X)/�, hxx(X) = −σ�2/4B + 6h(X)/�2,

hxxx(X) = 3σ�/4B − 6h(X)/�3, hxxxx(X) = −σ/B,
(3.6)

which serve to determine � and to provide three boundary conditions at x = X. Note that

h = O(σ�4), so the lag distance becomes small for h → 0 and σ � 1.

If only tension is included (B = 0) the equation is lower order and we can demand

only h = hx = 0 at x = L, and continuity of h, hx and hxx at x = X. The equation (3.4)

then has solution

h =
σ

2TN
(L − x)2, (3.7)

and the continuity conditions at x = X are

h(X) = σ�2/2TN, hx(X) = −σ�/TN, hxx(X) = σ/TN, (3.8)

which determine � and provide two boundary conditions at x = X.

The numerical method with this regularisation consists of first mapping the area

occuppied by the expanding fluid onto a fixed domain, applying the boundary conditions

(3.6) or (3.8) at each edge, and evolving those positions using (3.1). We then discretise

the mapped domain, approximating derivatives with centred differences and evaluating

N with quadrature, and advance the system in time with the stiff integrator. A finite

width and nonzero depth are required to initialise the computation. We therefore adopt

the distributed source w(x), taking xv = 1 and the initial h to be a small bulge with a

quartic shape spanning the vent. For currents on a horizontal surface, we again exploit

symmetry and compute the solution over only half of the domain, 0 � x � X(t) ≡ Xd(t).

For the problems on a slope, the upslope and downslope regions, −Xu(t) � x � 0 and

0 � x � Xd(t), are mapped separately onto fixed grids.

3.4 The boundary layers at the fluid fronts

In the following sections we focus on the effect of the regularisations as the pre-wetted

film becomes thin, δ � 1, or as the pressure in the lag region becomes large and negative,

σ � 1. In either limit, the regularisation is felt primarily over a thin boundary layer

adjoining the fluid fronts, x = X(t). The short lengthscale of these boundary layers

indicates that the term with highest derivative dominates the right-hand side of the

balance in (3.2). We therefore rescale the variables according to

x = X(t) + ε ξ, h(x, t) = Δ g(ξ), (3.9)
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Figure 2. Boundary layer solutions for (a) bending and (b) tension. Dashed lines are for the

pre-wetted film, solid lines are for the fluid lag, and the crosses indicate the position of the fluid

edge. Insets show a magnification close to ξ = 0, with vertical lines showing the fluid edge.

where (ε,Δ) � 1. These small parameters can be chosen so that

Ẋε5 = BΔ3 if B � 0, or Ẋε3 = TNΔ3 if B = 0, (3.10)

and either Δ = δ for the pre-wetted film or Δ = σε4/B for the fluid lag (in view of the

depth scale h = O(σ�4/B) over the gas-filled gap; if B = 0, Δ = σε2/TN instead). The

function g(ξ) then satisfies

−gξ = (g3gξξξξξ)ξ (B � 0) or gξ = (g3gξξξ)ξ (B = 0). (3.11)

The boundary conditions to be imposed on (3.11) depend on the choice of regularisation.

The details of the problems for both of our regularisations and the two choices, B � 0

and B = 0, are relegated to Appendix A; Figure 2 summarises the four possible boundary

layer solutions. The limiting behaviour as ξ → −∞ is either

g ∼ 1
2
Γξ2 or g ∼ −31/3ξ(ln −ξ)1/3, (3.12)

depending on whether bending or tension dominates the pressure gradient.

Rewriting this limiting behaviour in terms of the original variables, we derive the

following matching conditions on the bulk of the flow at x = X(t): if bending is included,

h = 0, hx = 0, hxx =

{
Γδ−1/5B−2/5Ẋ2/5 (pre-wetted film),

Γσ1/7B−3/7Ẋ2/7 (fluid lag),
(3.13)

where Γ ≈ 1.35 and Γ ≈ 1.77 are numerically determined constants. If B = 0,

h = 0, hx =

{
−31/3(ln 1/δ)1/3T−1/3N−1/3Ẋ1/3 (pre-wetted film),

−31/3(ln σ)1/3T−1/3N−1/3Ẋ1/3 (fluid lag).
(3.14)

If N is constant, these final conditions represent Tanner’s law for the dynamic contact

angle at a moving contact line [26]. The equivalent conditions on the curvature in (3.13)

represent a modified version of this law for higher derivatives [9]. As noted in the

appendix, the conditions in (3.14) have assumed that T, N and Ẋ are O(1), and ignored
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Figure 3. Numerical solutions for bending and gravity with the pre-wetted film with δ = 10−2.

Panel (a) shows snapshots of the solution at t = 2, 4 and t = 6, 10, . . . , 50; panel (b) adds the

snapshots for t = 200, 400, . . . , 4000. Panel (c) shows the evolution of the fluid edge x = X(t), and

panel (d) shows the evolution of the central height H = h(0, t). The lighter (red) pentagrams in

panels (c) and (d) show the early time solution from Section 4.1 (solution to (4.7)), and the dots in

panel (a) show an example profile from that solution. Dark (black) pentagrams show the late time

solution from Section 4.2 (solution to (4.13), (4.14) and (4.18)), and the dots in panel (b) show the

profile predicted at the final time from that solution.

logarithmic corrections in these variables. This asymptotic limit is not valid for large

times.

4 Flat solutions with bending and gravity

We concentrate first on the flat case in which only bending and gravity contribute to the

pressure: B = G = 1 and T = S = 0. The governing equation is then

ht =
[
h3 (hxxxxx + hx)

]
x
+ w. (4.1)

A numerically calculated solution is shown in Figure 3 for the case of the pre-wetted

film, with w taken as a line source at x = 0. Two distinct phases of the injection can be

identified: an ‘early’ time uniform pressure phase, in which spreading is controlled by the

conditions at the edge, followed by a ‘late’ time evolution towards self-similar gravity-

dominated spreading. (We ignore the extremely early time behaviour, when the bulge

height is comparable to the pre-wetted film thickness). Over each phase, characteristic

temporal scalings emerge for the extent, X(t), and central depth, H(t) = h(0, t), of the

current (Figures 3(c) and (d)).
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4.1 Early time δ9/5 � t � δ−5/7 or σ−9/11 � t � σ5/9: uniform pressure

During the early time evolution the fluid does not significantly spread laterally and the

pressure is approximately uniform, p ≈ P (t), except very close to the edge [23]. The shape

therefore evolves quasi-statically, with

hxxxx + h = P , 0 � x � X(t). (4.2)

The symmetry conditions hx = hxxx = 0 apply at x = 0, and the approximate boundary

conditions from (3.13) at x = X(t). The solution to (4.2) is

h =
H(CS + cs)

(C − c)(S − s)

[
1 − (Cs + Sc)

(CS + cs)
cosh

x√
2

cos
x√
2

− (Cs + Sc)

(CS + cs)
sinh

x√
2

sin
x√
2

]
, (4.3)

where h(0, t) ≡ H(t) = P (t)(C − c)(S − s)/(CS + cs), and

C = cosh
X√
2
, S = sinh

X√
2
, c = cos

X√
2
, s = sin

X√
2
. (4.4)

The edge curvature condition from (3.13) is

hxx(X) =
H(CS − cs)

(C − c)(S − s)
=

{
Γδ−1/5Ẋ2/5 (pre-wetted film)

Γσ1/7Ẋ2/7 (fluid lag).
(4.5)

Global mass conservation implies the volume constraint

1
2
t =

∫ X

0

h(x, t) dx = H
(CS + cs)X − (S2 + s2)

√
2

(C − c)(S − s)
, (4.6)

in which we have used the solution (4.3) for h. Hence, on eliminating H(t), the edge

condition becomes

(CS − cs)t

4[(CS + cs)X − (S2 + s2)
√

2]
=

{
Γδ−1/5Ẋ2/5 (pre-wetted film),

Γ̂ σ1/7Ẋ2/7 (fluid lag),
(4.7)

which constitutes an ordinary differential equation for X(t). The numerical solution to

(4.7) is included in Figure 3, and the evolving shape predicted by (4.3) is shown Figure 4.

For small early times, t � δ−1/7 or t � σ1/9, X is relatively small and (4.3) reduces to

the quartic

h = H
(
1 − x2/X2

)2
. (4.8)

In this limit, (4.7) has the power-law behaviour

X ∼
{
Aδ1/17 t7/17

Aσ−1/23 t9/23
H ∼

{
(15/16A) δ−1/17 t10/17 (pre-wetted film),

(15/16A) σ1/23 t14/23 (fluid lag),
(4.9)

where

A = (15/2Γ )5/17(17/7)2/17 ≈ 1.84, A = (15/2Γ )7/23(23/9)2/23 ≈ 1.68. (4.10)
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ĥ

(b)

0 1 2 3 4 5 6 7
0

0.5

1

(ln1/δ )−1/7 x

(l
n1

/
δ
)−

2
/
7
h

(c)

0 2 4 6
0

1

2

x̂

ĥ
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Figure 4. Asymptotic solutions for flat spreading. (a) Early time solution for bending and gravity,

from (4.3)–(4.7) for δ1/7t = 1, 2, . . . , 10. (b) Late time solution for bending and gravity, from (4.13),

(4.14) and (4.18), for t̂ = 2, 4, . . . , 20. (c) Early time solution for tension and gravity, from (5.3)–(5.6),

for (ln 1/δ)3/7t = 1, 2, . . . , 10. (d) Late time solution for tension and gravity, from (4.13), (4.14) and

(5.16), for t̂ = 2, 4, . . . , 20.

For larger early times, δ−1/7 � t � δ−5/7 or σ1/9 � t � σ5/9, the profile in (4.3)

becomes almost uniform with h ≈ H , and the solution tends towards

X ∼
{
δ1/7(4Γ )−5/7t,

σ−1/9(4Γ )−7/9t,
H ∼

{
1
2
δ−1/7(4Γ )5/7 (pre-wetted film),

1
2
σ1/9(4Γ )7/9 (fluid lag);

(4.11)

i.e. H becomes constant and X grows linearly in time, as seen in Figure 3.

Substituting these predictions into the original equation, one finds that constant pressure

is established for t � δ9/5 or t � σ−9/11, equivalent to the time taken for the current to

become sufficiently long that the boundary layer develops at the contact line. Moreover,

the approximation breaks down when t = O(δ−5/7) or t = O(σ7/9), at which point the time

derivative ht can no longer be neglected and a pressure gradient develops. At such times,

the length of the current is relatively large, X = O(δ−4/7) or X = O(σ2/3), indicating that

bending becomes unimportant over the bulk of the fluid layer.

4.2 Late time t � δ−1/7 or t � σ1/9: transition to gravity control

For the late time behaviour, and concentrating for the moment on the pre-wetted film,

we rescale the variables according to

t = δ−5/7 t̂, x = δ−4/7x̂, h = δ−1/7ĥ, X = δ−4/7X̂. (4.12)

To leading order, we then recover a standard equation describing viscous spreading under

gravity:

ĥt̂ = (ĥ3ĥx̂)x̂, 0 < x̂ � X̂(t̂), (4.13)
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with

−ĥ3ĥx̂ = 1
2

at x̂ = 0, X̂t̂ = −ĥ2ĥx̂ at x̂ = X̂. (4.14)

Unlike the problem considered by Huppert [15] and others, however, the fluid depth at

the edge, Ĥ1 ≡ ĥ(X̂), is not zero. Instead, the bending term reasserts its influence over

a layer adjacent to the front region; this edge layer connects the interior of the gravity

current to the contact line and has a thickness of δ4/7 in terms of the new coordinate x̂

(i.e. it is O(1) in terms of x). Writing x̂ = X̂ − δ4/7y, the leading order equation over the

edge layer is

ĥyyyyy + ĥy = 0 with ĥ → Ĥ1 as y → ∞. (4.15)

(Matching to the slope of the interior solution occurs at higher order in the expansion of

this edge layer solution, the details of which we omit for brevity). The conditions (3.13)

require

ĥ = ĥy = 0, ĥyy = ΓX̂
2/5

t̂
, at y = 0. (4.16)

The solution is

ĥ = Ĥ1

[
1 − e−y/

√
2

(
cos

y√
2

+ sin
y√
2

)]
, (4.17)

with

Ĥ1 = ΓX̂
2/5

t̂
. (4.18)

This last result determines the extra condition required to solve the interior problem in

(4.13), (4.14). A numerical solution is required (but is more straightforward than for the

original sixth-order equation) and is shown in Figure 4. The evolution of the fluid edge

and centre height from this solution are also included in Figure 3. The initial condition

for the calculation (begun at small, but finite t̂) is taken from the limiting behaviour of

the early time solution in Section 4.1: ĥ(x̂, 0) = 1
2
(4Γ )5/7 is uniform while X̂ ∼ (4Γ )−5/7 t̂.

As t̂ → ∞, the front decelerates and the edge height Ĥ1 tends towards zero. The solution

then converges towards the similarity solution of (4.13), (4.14) that results when ĥ = 0 at

x̂ = X̂. In terms of the original variables, that similarity solution,

h → t1/5f(x/t4/5), (4.19)

satisfies

1

5
f − 4

5
ηfη =

(
f3fη

)
η
, −f3fη =

1

2
at η = 0, −f3fη = f = 0 at η = η1.

(4.20)

The bending term causes a region of adjustment from this solution close to the edge, which

is eventually subsumed into the pre-wetted film. The very late time spreading (t � δ−5/7)

is therefore given by

X ∼ η1 t
4/5, H ∼ f(0) t1/5, (4.21)

where η1 ≈ 0.66 and f(0) ≈ 1.00 are determined by numerical solution of (4.20).

For the case of the fluid lag, the relevant scalings are

t = σ5/9 t̂, x = σ4/9x̂, h = σ1/9ĥ, X = σ4/9X̂, w = δ−4/9ŵ, (4.22)
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Figure 5. Numerical solutions for pure bending with the pre-wetted film. Panels (a) and (b) show

the positions of the fluid edge X(t) and the maximum deflection H(t) for the three values of film

thickness shown. Pentagrams show the predictions of (4.9). The inset in (b) shows a compensated

plot of H/t10/17, with the black dash-dotted line showing the equivalent behaviour if H ∼ t5/9.

Panel (c) shows final snapshots for the same solutions (main panel), and 10 snapshots of h for the

computation with δ = 10−3. Panel (d) shows the same data as (c) (including the inset), plotted using

the scaled variables (main panel), and a close up of the edge for the final snapshots (inset). The

dots show (1 − x2/X2)2.

and the leading-order problem to solve is then the same as (4.13), (4.14), but with the

boundary condition (4.18) replaced by

Ĥ1 = ΓX̂
2/7

t̂
. (4.23)

4.3 Pure bending

If only the bending term controls the spreading and there is no gravity, the quartic shape

from (4.8) and the power-law behaviour in (4.9) apply indefinitely. There are two notable

features of this solution.

First, spreading is entirely controlled by the behaviour close to the contact line. The

smaller the pre-wetted film or the more negative the lag pressure, the more the lateral

spreading of the fluid is confined and the greater the height at the centre. There is no

convergence as δ → 0 or σ → ∞; the prediction in that limit is an infinitely narrow,

infinitely tall blister. The dependence on either δ or σ is, however, rather weak (δ1/17 or

σ−1/23), and for practical purposes the difference is relatively small for different values of

the regularisation parameters; see Figures 5 and 6. These figures show numerical solutions

to the full problem with only the bending term in the equation, for three different values

of the regularisation parameters δ and σ, comparing the results with the predictions from

(4.9).
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Figure 6. Numerical solutions for pure bending with the fluid lag, showing the same information

as in Figure 5, with the pentagrams showing the analytical result from (4.9). The inset in (b) shows

a compensated plot of H/t14/23, with the black dash-dotted line showing the equivalent behaviour if

H ∼ t5/9. The inset in panel (d) shows a close up near the edge, plotted using the scaled coordinates

of the boundary layer from appendix A.

Second, the powers of time are different for the two regularisations, and in both cases

are different from the (X,H) ∼ (t4/9, t5/9) scalings expected based purely on the scale-

invariance of the bending-dominated differential equation. That is, one does not observe

a similarity solution. Nevertheless, the difference between these exponents is rather small.

For example, for X(t), 4/9 ≈ 0.44, 7/17 ≈ 0.41 and 9/23 ≈ 0.39. This coincidence is

presumably responsible for the erroneous identification of a similarity solution in previous

work [23]. The fact that the solutions do not tend towards the self-similar scaling suggests

that a similarity solution to the bending problem does not in fact exist.

5 Flat solutions with tension and gravity

We now consider the case with only tension and gravity: T = G = 1 and B = S = 0.

The equations to be solved are

ht =
[
h3(−Nhxxx + hx)

]
x
+ w, N =

1

L

∫ L

0

1
2
h2
x dx. (5.1)

A numerical solution is shown in Figure 7 for the case of the pre-wetted film. As for the

bending solution in Figure 3, the injection can be broken down into an early uniform

pressure phase, controlled by the conditions at the fluid edge, and a subsequent transition

towards self-similar gravity-controlled spreading, with tension and the contact line playing

no role.

As suggested by the matching conditions in Section 3.4, the asymptotic analysis of the

solutions in this case relies upon expansions in powers of ln 1/δ or ln σ. For practical
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Figure 7. Numerical solutions for tension and gravity with the pre-wetted film with δ = 10−2.

Panel (a) shows snapshots of the solution at t = 1.6, 3.2, 4.8 and t = 8, 12, . . . , 40; panel (b) adds

snapshots for t = 80, 120, . . . , 1000. Panel (c) shows the evolution of the fluid edge x = X, and panel

(c) shows the evolution of the central height H = h(0, t). Lighter (red) pentagrams in panels (c) and

(d) show the approximate early time solution from Section 5.1, and the dots in panel (a) show a

sample profile from that solution. Dark (black) pentagrams show the approximate late time solution

from Section 5.2, and the dots in panel (b) show the profile predicted at the final time from that

solution.

purposes, these numbers are not very large and the approximations cannot be expected

to be as good as for the bending case in the previous section. Nevertheless, the analysis

serves a useful purpose to understand the role of the regularisation in controlling the

spreading.

5.1 Early time t � (ln 1/δ)15/14 or t � (ln σ)15/14: uniform pressure

The approximate solution for the early pressure phase is constructed in much the same

way as for the bending problem in Section 4.1. For a constant pressure p ≈ P (t) over the

interior, we have

−Nhxx + h = P , 0 � x � X(t), (5.2)

with the symmetry condition hx = 0 at x = 0, and the conditions (3.14) at x = X. These

are combined with the global volume constraint and the integral expression for the tension

N(t) in (5.1), to provide an evolution equation for X(t).

The solution of (5.2) is

h = H
cosh(X/

√
N) − cosh(x/

√
N)

cosh(X/
√
N) − 1

, (5.3)

where H(t) = P (t)[cosh(X/
√
N) − 1]/ cosh(X/

√
N). The tension from (5.1) is therefore
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related to H and X by the transcendental equation

N =
H2

4X
√
N

sinh(X/
√
N) cosh(X/

√
N) − X/

√
N

[cosh(X/
√
N) − 1]2

. (5.4)

The global volume constraint demands

1

2
t =

∫ X

0

h(x, t) dx = H
√
N

(X/
√
N) cosh(X/

√
N) − sinh(X/

√
N)

cosh(X/
√
N) − 1

, (5.5)

and matching to the slope at the contact line in (3.14) requires

H sinh(X/
√
N)√

N[cosh(X/
√
N) − 1]

= 31/3Ẋ1/3N−1/3 ×
{

(ln 1/δ)1/3

(ln σ)1/3.
(5.6)

Combining (5.4)–(5.6) leads to an evolution equation for X(t), the solution to which is

shown in Figures 4 and 7. Given that we may simply replace δ with σ−1 to recover the

fluid lag problem from the pre-wetted film case, we continue with only the latter.

For t � (ln 1/δ)3/7, X is small and the shape in (5.3) is approximately

h = H
(
1 − x2/X2

)
. (5.7)

In this limit the solutions for X and H are

X ∼ C (ln 1/δ)−1/11 t6/11, H ∼ (3/4C) (ln 1/δ)1/11 t5/11, (5.8)

where

C = (11/6)1/11(3/4)3/11 ≈ 0.98. (5.9)

For (ln 1/δ)3/7 � t � (ln 1/δ)15/14, the counter-intuitive limiting behaviour is

X ∼ (3/10)1/3(1/2)5/9(ln 1/δ)−1/3t10/9, H ∼ (10/3)1/3(1/2)4/9(ln 1/δ)1/3t−1/9; (5.10)

i.e. H is decreasing and X is growing faster than linearly (see Figure 7). This reflects a

slumping behaviour, when the weight of the bulge becomes sufficient to overcome the

tension holding it together, and more fluid spreads outwards from the centre than is

provided from the source alone. However, this aspect of the solution lasts only a brief

time before the constant-pressure approximation itself breaks down; it is not seen in the

full numerical solutions with our modest values of ln 1/δ.

5.2 Late time t � (ln 1/δ)3/7 or t � (ln σ)3/7: transition to gravity control

As in the bending problem, at later times the interior of the flow becomes dominated by

gravity alone and the tension term is important only in a narrow layer close to the fluid
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edge. We write

t = (ln 1/δ)15/14 t̂, x = (ln 1/δ)6/7x̂, h = (ln 1/δ)3/14ĥ,

X = (ln 1/δ)6/7X̂, N = (ln 1/δ)−2/7N̂. (5.11)

The interior problem is then identical to that given in (4.13), (4.14), except for the edge

condition H1. The depth at the edge, Ĥ1 = ĥ(X̂) is determined by matching to the edge

layer, in which we write x̂ = X̂ − (ln 1/δ)−1ŷ and solve the leading order equation,

−N̂ĥŷŷŷ + ĥŷ = 0 with ĥ → Ĥ1 as ŷ → ∞, (5.12)

with the conditions (3.14) requiring

ĥ = 0, ĥŷ = 31/3X̂
1/3

t̂
N̂−1/3 at ŷ = 0. (5.13)

The solution is

ĥ = Ĥ1

(
1 − e−ŷ/

√
N̂

)
, Ĥ1 = 31/3X̂

1/3

t̂
N̂1/6. (5.14)

The tension N̂ is dominated by the stretching contribution from the edge layer and is

given by

N̂ =
1

X̂

∫ ∞

0

1

2
ĥ2
ŷ dŷ → N̂ =

Ĥ
4/3
1

42/3X̂2/3
. (5.15)

The expression for the fluid depth at the border of the interior region is therefore

Ĥ1 =
33/7

41/7
X̂−1/7X̂

3/7

t̂
. (5.16)

The interior problem (4.13), (4.14) with (5.16) once again requires a numerical solution;

initial conditions (imposed at small, but finite t̂) follow from the limiting behaviour in

Section 5.1: X̂(t̂) ∼ (3/10)1/3(1/2)5/9 t̂10/9 and ĥ(x̂, t̂) ∼ (10/3)1/3(1/2)4/9 t̂−1/9. The solution

is shown in Figures 4 and 7. Eventually, for t̂ → ∞, the edge depth Ĥ1 tends towards

zero and the behaviour converges to the similarity solution in (4.20) with the long-time

spreading given by (4.21).

5.3 Pure tension

If there is no gravity term, the quadratic solution (5.7) for the constant pressure phase and

the power laws in (5.8) apply indefinitely. As for the pure bending problem, this implies

that the spreading is controlled by the pre-wetted film depth or lag pressure, but the

dependence on δ or σ is even weaker than before. Some numerical solutions are shown in

Figure 8 for different values of the regularisation parameters; there is almost no difference

between the solutions and in fact the difference is less than predicted by the result in (5.8)

(this is particularly clear in the plots of H). This is presumably because that analysis relies

upon the largeness of ln 1/δ or ln σ, and even for δ = 10−3 this approximation is rather

poor. The disagreement may also be linked to the neglect of the time-dependent terms

in the logarithm of the matching behaviour in (3.14) (see Appendix A.3); the numerical
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Figure 8. Numerical solutions for pure tension with a pre-wetted film. Panels (a) and (b) show

X(t) and H(t); the pentagrams plot the predictions from (5.8) for the three values of δ. The inset in

panel (b) shows a compensated plot of H/t5/11. Panel (c) shows the final profile for each case; the

inset shows ten earlier snapshots for the computation with δ = 10−3. Panel (d) shows the data from

(c) in the scaled variables, h/H and x/X, with the inset displaying a magnification close to the final

fluid fronts. Dots show (1 − x2/X2) and crosses show the similarity solution from (5.17), (5.18) for

δ = 10−1.

solutions continue for long enough that such terms are comparable to 1/δ or σ and

should be taken into account. Nevertheless, even without accommodating this long time

behaviour, the analysis indicates that there is no convergence to a limit for δ → 0 or

σ → ∞.

Note that the power laws predicted by (5.8), (X,H) ∼ (t6/11, t5/11), are the same as those

predicted by a similarity scaling of the equation with pure tension (which are different

from those predicted for surface tension [18] because N ∼ t−2/11). This reflects the fact

that, for the approximate solution in (5.8), the time derivative ht is O(ln 1/δ)−1 smaller than

the divergence of the flux, regardless of time. An alternative analysis of the pure tension

case is to treat ln 1/δ as O(1), thereby invalidating the uniform pressure approximation.

The effective boundary conditions in (3.14) remain valid (the boundary layer analysis in

Appendix A relies on δ being small, rather than (ln 1/δ)−1), and the problem then has

a similarity solution h = t5/11f(x/t6/11), N = t−2/11ν, where f(η), ν, and the scaled fluid

edge position η1, satisfy

5

11
f − 6

11
ηfη = ν

[
f3fηηη

]
η
, ν =

1

η1

∫ η1

0

1

2
f2
η dη, (5.17)

with

fη = 0, νf3fηηη = 1
2

at η = 0, (5.18)

f3fηηη = 0, f = 0, fη = −(18/11)1/3(ln 1/δ)1/3η
1/3
1 ν−1/3 at η = η1. (5.19)
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Figure 9. Numerical solutions for bending, slope and a pre-wetted film with δ = 10−2. Panel (a)

shows snapshots at t = 1.5, 3, 4.5, . . ., 21. Panel (b) shows the evolution of the downstream and

upstream fluid edges, Xd(t) and Xu(t) (solid), and maximum height H (dashed). The dotted lines

show the early time behaviour from (5.8); the dot-dashed line shows the eventual linear trend of

Xd(t). Panel (c) shows the final profile, with dots showing the final upstream shape from (6.2) and

the travelling wave shape from (6.6). The travelling-wave solution is positioned so that its maximum

lines up with that of the numerical solution.

Note that this similarity solution still depends on the film depth δ. A numerical solution

to (5.17)–(5.19) is included in figure 6 and is very close to the quadratic in (5.7).

6 Sloping solutions with bending

We now consider injection on an incline with bending stresses. To keep the discussion

concise we ignore all other contributions to the pressure and set B = S = 1 and

T = G = 0. Hence,

ht =
[
h3(hxxxxx − 1)

]
x
+ w. (6.1)

A numerical solution with the pre-wetted film is shown in Figure 9. Initially, the behaviour

is the same as for the flat solution of Section 4, the slope having little effect until the length

of the current becomes sufficiently large. At longer length scales, the slope dominates the

pressure gradient over most of the flow, so that h ≈ 1 there (the constant injection

providing a downslope flux of unity). The bending stress remains important close to the

edges. It controls the distance that the fluid spreads upslope and its eventual limit Xu(∞).

Close to the downslope fluid front x = Xd(t), it controls the shape of a travelling wave

and gives rise to a decaying oscillation leading back from the front.
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6.1 Upstream spreading

After the initial transient, the shape at the upstream end tends to a steady state. Ignoring

the pre-wetted film, and for a line source at x = 0, the steady profile is given by

hxxxxx =

{
1 −Xu < x < 0,

1 − 1/h3 0 < x,
(6.2)

subject to

h = hx = hxx = 0 at x = −Xu(∞), (6.3)

continuity of h and its first four derivatives at x = 0, and h → 1 as x → ∞. The numerical

solution to this problem indicates Xu(∞) ≈ 2.53, and is included in Figure 9(c).

6.2 The travelling wave

We examine the behaviour at the downstream edge by moving to a translating frame with

the coordinate

ζ = x − Xd(t). (6.4)

In this frame, the solution evolves to a steady travelling wave determined by

−Ẋdh
′ =

[
h3(h′′′′′ − 1)

]′
, (6.5)

where the prime denotes a derivative with respect to ζ.

In the case of the pre-wetted film, it is necessary to account for the small flux of fluid

in the film ahead of the front (neglected above in (6.2)), which demands that the front

speed is Ẋd = 1 + δ + δ2. Equation (6.5) can then be integrated to give

h′′′′′ = 1 − 1 + δ + δ2

h2
+

δ + δ2

h3
, (6.6)

subject to

h → 1 as ζ → −∞ and h → δ as ζ → ∞. (6.7)

A solution to this steady problem is included in Figure 9.

In the case of the fluid lag, for which the fluid loses contact with the elastic sheet at

ζ = 0, the front speed is Ẋd = 1 and the integral of (6.5) becomes

h′′′′′ = 1 − 1

h2
, (6.8)

subject to h → 1 as ζ → −∞, and the gap boundary conditions (3.6) at ζ = 0 (those

conditions ensure continuity with the lag region in ζ > 0, and provide a total of three

conditions on h once the gap length � is determined). Some solutions to this problem are

shown in Figure 10 for different values of σ.
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Figure 10. Numerically computed travelling waves with the fluid lag. Panel (a) shows front profiles

for σ = 109, 109.5, . . . , 1013; the upper inset shows the same data logarithmically, with x scaled by

σ1/21 and h by σ5/21 (see Section 6.3.1); the lower inset shows the region around the first minima at

ζ1, with x scaled by σ−7/63 and h by σ−5/63 (see Section 6.3.2). The dashed line in the upper inset

shows the asymptotic prediction for the first three bulges of a train given by (6.10), and in the lower

inset shows the asymptotic prediction from (6.21). Panel (b) plots against σ the maximum heights

of the first two bulges, and the minimum height at their left hand borders. Pentagrams show the

asymptotic predictions in (6.28) and (6.26); the maxima scale with σ5/21, the minima with σ−5/63.

6.3 The effect of regularisation on the shape of the travelling wave

When the pre-wetted film is small, or the lag pressure is large, the boundary layer analysis

of Section 3.4 applies and indicates that

h → 0, h′ → 0, h′′ → δ−1/5Γ or σ1/7Γ for ζ → 0. (6.9)

In this section, we consider the pre-wetted film with δ � 1, for which the flux corrections

on the right-hand side of (6.6) can be neglected, reducing that equation to (6.8). Thus,

equivalent results for the fluid lag are obtained simply by replacing δ with σ−5/7 and Γ

with Γ .

6.3.1 The primary bulge

The relatively large second derivative arising in (6.9) implies that h must become large

directly behind the front, as seen in Figures 9 and 10. This generates a wide bulge over

which h−2 � 1 and the main balance in (6.8) is h′′′′′ ≈ 1. If the width of the bulge is

ζ1, the height is therefore h1 ∼ O(ζ5
1 ). Moreover, given that the contact-line curvature is

h′′ = O(δ−1/5), the estimate h′′ ∼ h1/ζ
2
1 indicates that the bulge has height h1 = O(δ−1/3),

and length ζ1 = O(δ−1/15).

At the left-hand border of the bulge, h must fall back to smaller values in order that the

term h−2 in (6.8) reenters the main balance and prevents the fluid depth from becoming

negative. This term then produces a sufficiently rapid adjustment of the fourth derivative

of h (i.e. the pressure) to cause h to rebound and remain positive. As we demonstrate

below, the transition layer in which h rebounds turns out to be relatively narrow. As

a result, the lower derivatives of h remain largely unaffected by the structure of the

transition region, which further demands that h approaches the left edge of the bulge
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quadratically. Imposing the conditions h = h′ = 0 at both borders of the bulge, we write

the quintic solution for its shape as

h =
1

120
ζ2(ζ + ζ1)

2

[
ζ + ζ1

(
1

2
+ ϕ1

)]
, (6.10)

where the contact-line curvature condition in (6.9) indicates that

ζ1 = δ−1/15Z1, Z1 =
(
120Γ/(1 + 2ϕ1)

)1/3
, (6.11)

but the constant ϕ1 is not yet determined. For use below, it is helpful to note that the

non-zero derivatives at the right and left edges of the bulge are then

h′′
R/L = δ−1/5H ′′

R/L, h′′′
R/L = δ−2/15H ′′′

R/L, h′′′′
R/L = δ−1/15H ′′′′

R/L, (6.12)

where

H ′′
R/L =

Z3
1

120
(2ϕ1 ± 1), H ′′′

R/L =
Z2

1

10
(1 ± ϕ1), H ′′′′

R/L =
Z1

10
(2ϕ1 ± 5). (6.13)

6.3.2 The minimum at the left border of the bulge

The dominant balance in the transition region at the left-hand border of the bulge is

h′′′′′ ∼ −h−2, so that the jump in the fourth derivative across this region is

−[h′′′′]
ζ+
1

ζ−
1

∼
∫ ζ+

1

ζ−
1

1

h2
dζ, (6.14)

(the integral is taken over the width of the transition region, defined more precisely below).

This is required from (6.12) to be of order δ−1/15, and the curvature of the transition

region must also match the curvature of the bulge solution, h′′ = O(δ−1/5). These balances

indicate that the appropriate scaling of the transition region is

ζ = −ζ1 + δ7/45ς, h = δ1/9G(ς), (6.15)

and the rescaled governing equation is therefore

Gςςςςς = −δ4/9

G2
+ δ2/3. (6.16)

Thus, to leading order, G is quartic and is determined simply by matching with the bulge

solution, giving

G ∼ G1 + 1
2
H ′′

Lς
2 + 1

6
δ2/9H ′′′

L ς
3 + O(δ4/9). (6.17)

From this we deduce

−
[
h′′′′]ζ+

1

ζ−
1

= −δ−23/45
[
Gςςςς

]∞
−∞ ∼

∫ ∞

−∞

δ−1/15 dς

(G1 + 1
2
H ′′

Lς
2)2

= δ−1/15 2π
√

15

G
3/2
1 Z

3/2
1 (2ϕ1 − 1)1/2

.

(6.18)
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6.3.3 The wave train

The solution for the transition region in (6.17) emphasises how the second and third

derivatives of h(ζ) are not modified to leading order by the local structure of this region.

Thus, immediately to the left of the minimum at ζ = ζ1, we must continue to integrate

the travelling wave equation (6.8) subject to the conditions,

h(ζ+
1 ) = 0, h′(ζ+

1 ) = 0, h′′(ζ+
1 ) = δ−1/5H ′′

L. (6.19)

But, save for the replace of Γ by H ′′
L, these conditions are identical to those in (6.9), which

kick off the primary bulge solution in (6.10). In other words, the minimum at ζ = ζ1

must be followed by another bulge of width ζ2 = O(δ−1/15) and height h2 = O(δ−1/3).

Furthermore, that second bulge must terminate to the left in another transition region

with the same structure as that elucidated in Section 6.3.2. Continuing the argument, we

see that the unavoidable consequence is a train of successive bulges. Indeed, Figure 10

presents numerical evidence for the development of a second bulge behind the primary

one, scaling in the same asymptotic way, but algebraically smaller in size. Generalising

(6.10), the kth bulge solution can be compactly written as

h =
1

120

⎛
⎝ζ +

k−1∑
j=1

ζj

⎞
⎠

2 ⎛
⎝ζ +

k∑
j=1

ζj

⎞
⎠

2 ⎡
⎣ζ +

k−1∑
j=1

ζj + ζk

(
1

2
+ ϕk

)⎤
⎦ , (6.20)

which has derivatives at the edges given by (6.12) and (6.13) with subscript 1 replaced by

k. The generalisation of the leading order solution (6.17) for the kth transition region is

similarly

G = Gk +
Z3
k

240
(2ϕk − 1) ς2, (6.21)

where ζk = δ−1/15Zk .

The final piece of the puzzle is to determine the constants, ϕk , and hence the values of

Zk and Gk . In view of (6.21), matching of the second and third derivatives of h across the

kth transition region implies

λk ≡ ζk+1

ζk
≡ Zk+1

Zk

=

(
2ϕk − 1

2ϕk+1 + 1

)1/3

=

(
1 − ϕk

1 + ϕk+1

)1/2

. (6.22)

This relation can be written as a cubic equation for ϕk+1, although one of its solutions,

ϕk+1 = −ϕk , is spurious. The remaining possible solutions are

ϕk+1 =
1 + ϕk − 4ϕ2

k ± (1 − ϕk)
√

5 − 8ϕk

2(1 − 2ϕk)2
. (6.23)

These can be viewed as a two-fold mapping, ϕk+1 = F(ϕk), as illustrated in Figure

11. However, none of the iterative solutions for ϕk provides a sensible choice for these

constants other than the fixed point,

ϕk ≡ ϕ ≈ 0.625. (6.24)
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Figure 11. The two possible branches of the map ϕk+1 = F(ϕk) shown by solid and dotted lines (the

upper branch diverges at ϕk = 0.5). For ϕk >
5
8
, the solutions become complex and are not drawn.

The dashed line is the diagonal, ϕk+1 = ϕk and the star indicates the fixed point, ϕk+1 = ϕk = ϕ.

Given this choice, we may complete our asymptotic solution by noting that the jump

in the fourth derivative of h across the kth transition region must be

−[h′′′′]
ζ+
k

ζ−
k

= δ−1/15Zk

(2ϕ + 5)(1 − ϕ)1/2 − (2ϕ − 5)(1 + ϕ)1/2

10(1 + ϕ)1/2
. (6.25)

Matching this with the kth generalisation of (6.18) finally determines

Gk ≈ 17.33Z
−5/3
k . (6.26)

In summary, in the limit δ → 0, the solution develops a train of bulges with widths,

heights hk ∝ ζ5
k , and left-hand minima given by

ζk = δ−1/15Zk, hk = δ−1/3Hk, gk = δ1/9Gk, (6.27)

where

Zk ≈ 3.76Γ 1/3λk−1, Hk ≈ 0.26Γ 5/3λ5(k−1), Gk ≈ 1.90Γ−5/9λ−5(k−1)/3, (6.28)

and λ ≈ 0.48 is the ratio of successive bulge widths. These predictions are compared with

numerical solutions in Figure 10. Note that the relatively small values of the exponents in

(6.27), and the rapid decrease in successive bulge heights, signifies that very small values

of δ and σ−1 are required in order to observe the scaling of the second bulge. Note also

that the train of waves does not continue forever. The bulge lengths ζk follow a geometric

progression that sums to a finite value

∞∑
k=1

ζk = δ−1/15 Z1

1 − λ
, (6.29)

and indeed the bulge heights reduce to become O(1) when k = O(ln 1/δ). Thus the

number of bulges in the train grows logarithmically with δ and one has to reduce δ (or
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Figure 12. Numerical solutions for tension, slope and a pre-wetted film with δ = 10−2. Panel (a)

shows snapshots of h at t = 1, 2, . . ., 5, and then 7, 9, . . ., 37. Panel (b) shows the evolution of the

downstream and upstream fluid edges; the dotted line shows the early time solution from (5.8) and

the dashed line shows the eventual linear trend of Xd(t). Panel (c) shows the maximum height H(t),

increasing, and the tension N, decreasing; the dotted line show the early time behaviour from (5.8)

and the dashed line shows the expected late-time dependence of N from Section 7.2.

equivalently increase σ) to quite extreme values even to see two of them in the numerical

solutions.

7 Sloping solutions with tension

Finally, we consider a current on a slope, including tension but not bending: B = G = 0

and T = S = 1. The problem to be solved is

ht =
[
−h3(Nhxxx + 1)

]
x
+ w, N =

1

Lu + Ld

∫ Ld

−Lu

1
2
h2
x dx. (7.1)

A numerical solution with a pre-wetted film is shown in Figure 12. Aside from the

non-constant tension, this problem is equivalent to the standard problem of fluid flowing

down a slope with surface tension (Tuck & Schwartz 1990). The short time behaviour

is the same as seen in Section 5. When the slope takes over, the bulk of the flow is

dominated by the slope, with h ≈ 1, and the tension comes into play only near the vent

and downslope edge, where a prominent ridge appears. As the length of the fluid region

expands, the tension decreases in time so that the effect of the tension on the shape of

the front might also be expected to decay in time. The solution for the pre-wetted film in

Figure 12 suggests that the height of the ridge remains constant, however, while its length

scale decreases in time. We confirm this observation below.
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7.1 Upstream spreading

Around the vent, the tension allows the fluid depth to vary smoothly from h ≈ 1

downstream to h = 0 some distance upstream. However, the length scale over which this

adjustment occurs is O(N1/3), which decays with t. Thus, once upstream spreading has

stopped and Xu has reached its maximum value, the fluid subsequently drains back down

the slope into this adjustment region and joins the main current.

At large times, the adjustment is quasi-steady and is largely confined to a region

x > −x∗(t) close to the vent, while an ever-thinning film occupies the interval −Xu < x <

−x∗ (the situation is similar to a fixed-volume drop draining on a slope; see [29]). As

the draining film becomes very thin, one may effectively apply the boundary conditions

h = hx = 0 at −x∗ (though we omit detailed justification here). Writing x = N(t)1/3z and

x∗(t) = N(t)1/3z∗, we see that the shape of the adjustment region is described by

−hzzz =

{
1 −z∗ < z < 0

1 − 1/h3 0 < z,
(7.2)

with boundary conditions h = hz = 0 at z = −z∗ and h → 1 as z → ∞. Numerical solution

of this problem determines z∗ ≈ 1.73.

7.2 The travelling wave

Considering first the case of the pre-wetted film, we again study the travelling wave by

working in the translating frame of the front. This time the relevant length scale depends

on the tension N(t): we write

h = h(ζ), ζ = N−1/3(x − Xd), (7.3)

and neglect the time derivative in (7.1) (which can be justified since N decays with t) to

furnish

−Ẋdh
′ =

[
−h3(h′′′ + 1)

]′
, (7.4)

with h → 1 as ζ → −∞ and h → δ as ζ → ∞. Solutions to this problem are shown in

Figure 13.

The fact that this rescaled problem becomes independent of the tension rationalises the

observation that the height of the travelling wave remains constant in time. Moreover,

contributions to the tension arise only from the vicinity of the vent and the travelling

front, so the integral for the tension becomes

N ∼ 1

N1/3t

[∫ ∞

−z∗

1

2
h2
z dz +

∫ ∞

−∞

1

2
h′2 dζ

]
(7.5)

(Lu + Ld ∼ t). Thus, N ∼ Bt−3/4, where the constant B depends on δ in view of the

boundary condition for (7.4). The characteristic width of the bulge at the front therefore
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Figure 13. Numerical solutions for the travelling wave problem for tension and a pre-wetted film.

Panel (a) shows the front profile for δ = 10−1, 10−2, . . . , 10−14; the inset compares the solution for

δ = 10−14 with the asymptotic result in (7.8). Panel (b) shows the maximum height of the first bulge,

and the minimum height at its left edge, as δ is varied. Stars show the prediction from (7.8), scaling

with (ln 1/δ)1/2.

decreases in time as t−1/4. For δ = 10−2, B ≈ 1.22 and the asymptotic prediction for N(t)

is included in Figure 12.1

For the fluid lag the situation is less clear-cut: the boundary conditions (3.8) apply

at ζ = 0, and indicate that the travelling wave solution depends on a time-dependent

regularisation parameter, σ̂ = σN−1/3. However, at least when N � σ−1, the effective

boundary conditions in (3.14) hold and the travelling wave shape for the fluid lag

becomes equivalent to that for the pre-wetted film.

7.3 The effect of regularisation on the shape of the travelling wave

For δ � 1, the integral of (7.4) furnishes

h′′′ = −1 + h−2, (7.6)

ignoring the flux corrections in the pre-wetted film. We apply h → 1 for ζ → −∞, and the

effective contact angle conditions in (3.14),

h = 0, h′ = −31/3(ln 1/δ)1/3 at ζ = 0. (7.7)

The asymptotic structure of the solution to this problem was analyzed by Benilov et al. [2],

and consists of a train of bulges in which the dominant balance is h′′′ ≈ −1. The first

1 This solution for the tension will become invalid once the length of the current is sufficiently

large that the fluid traction acting over its great length causes a significant gradient in tension.

As noted in Section 2, this has been ignored from our analysis, but with the adopted non-

dimensionalisation the traction per unit length exerted by the uniform current would be 1
2
ε2,

where ε = H/L is the characteristic aspect ratio, and the longitudinal force balance is therefore

∂N/∂x = − 1
2
ε2. It can be shown that this will eventually lead to an increase in the average tension

once Xd ∼ t ∼ O(ε−8/7) (the tension at the downstream end continues to decrease towards zero

however). A similar modification would apply to the results in Section 5 once the current is so large

that traction on the sheet becomes important.
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bulge has the shape

h = −1

6
ζ(ζ + ζ1)

2, ζ1 = (ln 1/δ)1/621/232/3, (7.8)

with a maximum height of h1 = (ln 1/δ)1/225/2/9. As seen in Figure 13, extremely small

values of δ are required to make this approximation remotely close to the full solution,

the error in the predicted maximum height for δ = 10−15 still being around 5%.

Unlike in the travelling front problem for bending, when the amplitude of successive

bulges decayed algebraically, the bulges in this case have asymptotically lower amplitude,

each bulge being logarithmically smaller than the previous one. There is little hope of

being able to distinguish this in numerical solutions with finite values of δ or σ. Similar

asymptotically decaying trains of capillary waves also occur in other settings [8, 31].

8 Discussion

We have analyzed solutions of a higher-order nonlinear diffusion equation for a fluid

spreading underneath an elastic sheet. Our primary focus has been on the behaviour close

to the advancing fronts at the edges of the fluid and the role this has in controlling the

dynamics. The early time behaviour always depends on the detailed dynamics of those

contact lines. We have used two regularisations of the contact region to explore this

dependence: a pre-wetted film and a fluid lag. For long times, the spreading is always

eventually controlled by gravity, although the time taken to reach this state depends upon

the choice of the parameters inherent in the regularisation (here, the film thickness, δ, or

the lag pressure, σ). More extreme values of these parameters have the effect of confining

the flow to a narrower region and lengthening the time taken for gravity to take control.

Our analysis of tension-dominated spreading demonstrates that solutions are qualitat-

ively similar to those for a current restrained by surface tension; the decay of the elastic

tension in time mostly alters how the length and depth of the current scale with time, and

cause any boundary layers in which the tension controls the dynamics to gradually thin.

With bending, the dependence of the solutions on the regularisation parameters at the

edge is stronger, depending on a weak power rather than a logarithm (compare Figures

5, 6 and 8). In the case of the travelling wave on the slope, the bending stress creates a

decaying wave train extending behind the front; this feature has some similarities with

the train of capillary waves seen in the corresponding surface tension problem [2] (and,

indeed, the problem with elastic tension), although the asymptotic structure is somewhat

different and more readily observable.

For tension-dominated problems, the solutions depend logarithmically on the regular-

isation parameters. The origin of this dependence is the match between the three powers

of the fluid depth h in the effective diffusion coefficient and the three derivatives of h

in the pressure gradient. This corresponds to a critical situation in a wider class of such

equations with other exponents [9]. Further work could extend our analysis to other

values of the exponent of h in the diffusivity; that such choices may lead to different

behaviour is physically important because other exponents emerge in alternative physical

models, such as for flow in porous media. The difficulties associated with the degeneracy

of the equation at the edges are in part due to the approximation of the elastic stresses
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using the beam equation (2.2); another relevant extension would be to reintroduce the

full elastic equations for the sheet close to the contact line and impose an appropriate

condition on the stress singularity at the fracture-like tip [4, 20].

We have focussed on planar spreading as the simplest context in which to understand

the behaviour at the fluid edge. Most applicable settings are two dimensional, however, in

which case the tension becomes spatially varying as well as time-dependent (e.g. [5]). Even

without that extra layer of complexity, the direct extension of our numerical solutions to

two dimensions (unless axisymmetric) is problematic, because a fine resolution is required

to resolve the detailed structure of the region near the contact “contour”. A potential use

for an analysis of the type presented here is to formulate effective boundary conditions

that avoid the need for such detailed resolution. Alternatively, one could explore the

stability of the planar travelling front solutions towards transverse perturbations; indeed

it is highly likely that the fronts suffer a fingering instability as in the corresponding

surface tension problem [3,6]. A step in this direction has been taken by Khomenko [17].

For clarity, we have separately addressed the cases when bending and tension provide

the stress from the elastic sheet. In general, however, both terms appear in the equation

and one may wonder how this may affect the general features of the spreading dynamics.

Generically, one expects that the higher derivatives of the bending stress impact the

problem more at earlier times than the tension, which becomes more prominent later in

the evolution, before gravity eventually wins out. Thus, solutions may experience a variety

of different evolutionary phases due to the interplay of bending, tension and gravity.

Provided the bending term is present, that term will always dominate the behaviour in

the narrow region adjoining the contact line, and the asymptotic solutions that we have

presented can be modified to account for situations with a combination of bending,

tension and gravity controlling the pressure over the fluid interior. A recent study [22]

has considered the axisymmetric analogue of this problem, and explored such solutions

with a tension-dominated interior matching to a bending-dominated edge region.
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Appendix A Boundary layers at the fluid front

A.1 Pre-wetted film with bending

When B � 0, bending dominates the pressure gradient on small length scales. Moreover,

for a pre-wetted film, h → δ ahead of the fluid front. Thus, we take

ε = δ3/5B1/5Ẋ−1/5 and Δ = δ (A 1)
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in (3.9). The integral of (3.11a) leads to

1 − g = g3gξξξξξ with g → 1 as ξ → ∞. (A 2)

In order to match to the bulk of the fluid flow, we require g(ξ) to grow at most

quadratically as ξ → −∞:

g ∼ 1
2
Γξ2 as ξ → −∞. (A 3)

The numerical solution to (A 2), which is shown in Figure 2, provides Γ ≈ 1.35. In terms

of the original variables, the limiting behaviour in (A 3) furnishes the first relation in

(3.13).

A.2 Fluid lag with bending

For a fluid lag, the pressure condition Bhxxxx = −σ at x = X implies

ε = σ−3/7B2/7Ẋ1/7 and Δ = σ−5/7B1/7Ẋ4/7. (A 4)

The fluid occupies ξ < 0 and the jump condition (3.1) applies at ξ = 0, as do the four

conditions in (3.6) that describe the lag region. The leading order boundary layer problem

is therefore

−1 = g2gξξξξξ (A 5)

with

72g + 24Λgξ − Λ4 = 24g − 4Λ2gξξ − Λ4 = 24g + 4Λ3gξξξ − 3Λ4 = gξξξξ + 1 = 0 (A 6)

at ξ = 0. Here Λ = σ3/7B−2/7Ẋ−1/7� is the rescaled lag, which is determined as part of

the solution.

Numerical solution now gives

g → 1
2
Γξ2 as ξ → −∞, (A 7)

where Γ ≈ 1.77, and the scaled lag is Λ ≈ 1.33.

A.3 Pre-wetted film with tension

If there is no bending term, B = 0, and the tension dominates the pressure gradient near

the front. The local problem at the front is analogous to that with surface tension [28,30].

We write

ε = δ T1/3N1/3Ẋ−1/3 and Δ = δ , (A 8)

and the integral of (3.11b) provides

g − 1 = g3gξξξ, with g → 1 as ξ → ∞. (A 9)

Matching now demands the limiting behaviour,

g ∼ −31/3ξ(ln(−ξ))1/3 as ξ → −∞. (A 10)
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Or, in terms of the original variables,

h ∼ 31/3
[
ln

(
δ−1T−1/3N−1/3Ẋ1/3(X − x)

)]1/3

T−1/3N−1/3Ẋ1/3(X − x). (A 11)

In translating this relation to the final condition in (3.14), we neglect the terms Ẋ and

N in the logarithm, as well as the dependence on x. This assumes implicitly that these

quantities are much larger than δ (or σ−1 below), which is asymptotically correct for small

enough t. However Ẋ and N decay in time and such an approximation is strictly invalid

once ln t = O(ln 1/δ) (or O(ln σ)). We avoid explicit consideration of such large times in

the current exploration.

A.4 Fluid lag with tension

In this case, the condition TNhxx = σ at x = X indicates that

ε = σ−1T2/3N2/3Ẋ1/3 and Δ = σ−1T1/3N1/3Ẋ2/3. (A 12)

The integral of (3.11b) is

1 = g2gξξξ, (A 13)

with the boundary conditions (3.8) becoming

g − 1
2
Λ2 = gξ + Λ = gξξ − 1 = 0 at ξ = 0, (A 14)

where Λ = σ T−2/3N−2/3Ẋ−1/3� is the rescaled lag. Again,

g ∼ −31/3ξ(ln(−ξ))1/3 as ξ → −∞, (A 15)

or

h ∼ 31/3
[
ln

(
σ T−2/3N−2/3Ẋ−1/3(X − x)

)]1/3

T−1/3N−1/3Ẋ1/3(X − x). (A 16)
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